Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2313343121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315839

RESUMEN

Plants tightly control growth of their lateral organs, which led to the concept of apical dominance. However, outgrowth of the dormant lateral primordia is sensitive to the plant's nutritional status, resulting in an immense plasticity in plant architecture. While the impact of hormonal regulation on apical dominance is well characterized, the prime importance of sugar signaling to unleash lateral organ formation has just recently emerged. Here, we aimed to identify transcriptional regulators, which control the trade-off between growth of apical versus lateral organs. Making use of locally inducible gain-of-function as well as single and higher-order loss-of-function approaches of the sugar-responsive S1-basic-leucine-zipper (S1-bZIP) transcription factors, we disclosed their largely redundant function in establishing apical growth dominance. Consistently, comprehensive phenotypical and analytical studies of S1-bZIP mutants show a clear shift of sugar and organic nitrogen (N) allocation from apical to lateral organs, coinciding with strong lateral organ outgrowth. Tissue-specific transcriptomics reveal specific clade III SWEET sugar transporters, crucial for long-distance sugar transport to apical sinks and the glutaminase GLUTAMINE AMIDO-TRANSFERASE 1_2.1, involved in N homeostasis, as direct S1-bZIP targets, linking the architectural and metabolic mutant phenotypes to downstream gene regulation. Based on these results, we propose that S1-bZIPs control carbohydrate (C) partitioning from source leaves to apical organs and tune systemic N supply to restrict lateral organ formation by C/N depletion. Knowledge of the underlying mechanisms controlling plant C/N partitioning is of pivotal importance for breeding strategies to generate plants with desired architectural and nutritional characteristics.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Fitomejoramiento , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Plantas/metabolismo , Transducción de Señal/genética , Azúcares , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Trends Plant Sci ; 28(10): 1098-1100, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37574427

RESUMEN

In 1998, Bill Gray and colleagues showed that warm temperatures trigger arabidopsis hypocotyl elongation in an auxin-dependent manner. This laid the foundation for a vibrant research discipline. With several active members of the 'thermomorphogenesis' community, we here reflect on 25 years of elevated ambient temperature research and look to the future.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura , Hipocótilo/metabolismo , Ácidos Indolacéticos
3.
Plant Cell Environ ; 46(11): 3392-3404, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37427798

RESUMEN

High-temperature stress limits plant growth and reproduction. Exposure to high temperature, however, also elicits a physiological response, which protects plants from the damage evoked by heat. This response involves a partial reconfiguration of the metabolome including the accumulation of the trisaccharide raffinose. In this study, we explored the intraspecific variation of warm temperature-induced raffinose accumulation as a metabolic marker for temperature responsiveness with the aim to identify genes that contribute to thermotolerance. By combining raffinose measurements in 250 Arabidopsis thaliana accessions following a mild heat treatment with genome-wide association studies, we identified five genomic regions that were associated with the observed trait variation. Subsequent functional analyses confirmed a causal relationship between TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) and warm temperature-dependent raffinose synthesis. Moreover, complementation of the tps1-1 null mutant with functionally distinct TPS1 isoforms differentially affected carbohydrate metabolism under more severe heat stress. While higher TPS1 activity was associated with reduced endogenous sucrose levels and thermotolerance, disruption of trehalose 6-phosphate signalling resulted in higher accumulation of transitory starch and sucrose and was associated with enhanced heat resistance. Taken together, our findings suggest a role of trehalose 6-phosphate in thermotolerance, most likely through its regulatory function in carbon partitioning and sucrose homoeostasis.


Asunto(s)
Arabidopsis , Termotolerancia , Temperatura , Rafinosa , Termotolerancia/genética , Trehalosa/metabolismo , Estudio de Asociación del Genoma Completo , Arabidopsis/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Sacarosa , Fosfatos
4.
Ecol Evol ; 7(16): 6304-6313, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28861234

RESUMEN

In the arms race between plants, herbivores, and their natural enemies, specialized herbivores may use plant defenses for their own benefit, and variation in plant traits may affect the benefits that herbivores derive from these defenses. Pieris brassicae is a specialist herbivore of plants containing glucosinolates, a specific class of defensive secondary metabolites. Caterpillars of P. brassicae are known to actively spit on attacking natural enemies, including their main parasitoid, the braconid wasp Cotesia glomerata. Here, we tested the hypothesis that variation in the secondary metabolites of host plants affects the efficacy of caterpillar regurgitant as an anti-predator defense. Using a total of 10 host plants with different glucosinolate profiles, we first studied natural regurgitation events of caterpillars on parasitoids. We then studied manual applications of water or regurgitant on parasitoids during parasitization events. Results from natural regurgitation events revealed that parasitoids spent more time grooming after attack when foraging on radish and nasturtium than on Brassica spp., and when the regurgitant came in contact with the wings rather than any other body part. Results from manual applications of regurgitant showed that all parameters of parasitoid behavior (initial attack duration, attack interruption, grooming time, and likelihood of a second attack) were more affected when regurgitant was applied rather than water. The proportion of parasitoids re-attacking a caterpillar within 15 min was the lowest when regurgitant originated from radish-fed caterpillars. However, we found no correlation between glucosinolate content and regurgitant effects, and parasitoid behavior was equally affected when regurgitant originated from a glucosinolate-deficient Arabidopsis thaliana mutant line. In conclusion, host plant affects to a certain extent the efficacy of spit from P. brassicae caterpillars as a defense against parasitoids, but this is not due to glucosinolate content. The nature of the defensive compounds present in the spit remains to be determined, and the ecological relevance of this anti-predator defense needs to be further evaluated in the field.

5.
Plant J ; 88(6): 976-991, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27538820

RESUMEN

The induced production of secondary metabolites in herbivore-attacked plants varies in space and time. However, the consequences of these spatiotemporal patterns for herbivore performance are not well understood. This is particularly true for 1,4-benzoxazin-3-ones (BXs), the major induced defensive metabolites of maize. Here we report on the spatiotemporal dynamics of BX induction and its consequences for the leaf feeder Spodoptera littoralis. Defence-related phytohormones and transcript levels of BX biosynthetic genes were upregulated locally at the wound site within 12 h of herbivory. Within another 12 h, the insecticidal BX HDMBOA-Glc started to accumulate in a highly localized manner at the feeding site. Changes in BX metabolism away from the feeding site within the same leaf were much weaker and were undetected in systemic leaves. Following the removal of the caterpillars, local HDMBOA-Glc levels remained elevated for 7 days. Caterpillars that were forced to feed directly on locally induced leaf parts, but not on adjacent leaf parts, suffered from reduced growth. This effect was abolished in the BX-deficient bx1 mutant. We did not find any evidence that BXs regulate defensive phytohormones or their own accumulation. In summary, this study shows that induced herbivore resistance in maize is highly localized and dependent on BXs.


Asunto(s)
Ácido Abscísico/metabolismo , Herbivoria/fisiología , Spodoptera/patogenicidad , Zea mays/metabolismo , Animales , Benzoxazinas/metabolismo , Ácidos Indolacéticos/metabolismo , Zea mays/parasitología
6.
Plant Cell ; 28(7): 1682-700, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27317675

RESUMEN

Benzoxazinoids are important defense compounds in grasses. Here, we investigated the biosynthesis and biological roles of the 8-O-methylated benzoxazinoids, DIM2BOA-Glc and HDM2BOA-Glc. Using quantitative trait locus mapping and heterologous expression, we identified a 2-oxoglutarate-dependent dioxygenase (BX13) that catalyzes the conversion of DIMBOA-Glc into a new benzoxazinoid intermediate (TRIMBOA-Glc) by an uncommon reaction involving a hydroxylation and a likely ortho-rearrangement of a methoxy group. TRIMBOA-Glc is then converted to DIM2BOA-Glc by a previously described O-methyltransferase BX7. Furthermore, we identified an O-methyltransferase (BX14) that converts DIM2BOA-Glc to HDM2BOA-Glc. The role of these enzymes in vivo was demonstrated by characterizing recombinant inbred lines, including Oh43, which has a point mutation in the start codon of Bx13 and lacks both DIM2BOA-Glc and HDM2BOA-Glc, and Il14H, which has an inactive Bx14 allele and lacks HDM2BOA-Glc in leaves. Experiments with near-isogenic maize lines derived from crosses between B73 and Oh43 revealed that the absence of DIM2BOA-Glc and HDM2BOA-Glc does not alter the constitutive accumulation or deglucosylation of other benzoxazinoids. The growth of various chewing herbivores was not significantly affected by the absence of BX13-dependent metabolites, while aphid performance increased, suggesting that DIM2BOA-Glc and/or HDM2BOA-Glc provide specific protection against phloem feeding insects.


Asunto(s)
Benzoxazinas/metabolismo , Zea mays/metabolismo , Mutación/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Zea mays/genética
7.
PLoS One ; 10(8): e0135722, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26267478

RESUMEN

As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate that single pairwise comparisons may lead to false conclusions regarding the effects of domestication on defensive and possibly other traits.


Asunto(s)
Herbivoria/fisiología , Zea mays/fisiología , Animales , Hojas de la Planta/parasitología , Hojas de la Planta/fisiología , Hojas de la Planta/envenenamiento , Selección Genética , Zea mays/genética , Zea mays/parasitología
8.
Plant Cell Environ ; 38(6): 1081-93, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25293400

RESUMEN

Plant defences vary in space and time, which may translate into specific herbivore-foraging patterns and feeding niche differentiation. To date, little is known about the effect of secondary metabolite patterning on within-plant herbivore foraging. We investigated how variation in the major maize secondary metabolites, 1,4-benzoxazin-3-one derivatives (BXDs), affects the foraging behaviour of two leaf-chewing herbivores. BXD levels varied substantially within plants. Older leaves had higher levels of constitutive BXDs while younger leaves were consistently more inducible. These differences were observed independently of plant age, even though the concentrations of most BXDs declined markedly in older plants. Larvae of the well-adapted maize pest Spodoptera frugiperda preferred and grew better on young inducible leaves irrespective of plant age, while larvae of the generalist Spodoptera littoralis preferred and tended to grow better on old leaves. In BXD-free mutants, the differences in herbivore weight gain between old and young leaves were absent for both species, and leaf preferences of S. frugiperda were attenuated. In contrast, S. littoralis foraging patterns were not affected. In summary, our study shows that plant secondary metabolites differentially affect performance and foraging of adapted and non-adapted herbivores and thereby likely contribute to feeding niche differentiation.


Asunto(s)
Benzoxazinas/análisis , Herbivoria , Zea mays/química , Factores de Edad , Animales , Benzoxazinas/metabolismo , Ecosistema , Larva , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Spodoptera/fisiología , Zea mays/metabolismo
9.
Bioessays ; 37(2): 167-74, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25389065

RESUMEN

The defense of plants against herbivores and pathogens involves the participation of an enormous range of different metabolites, some of which act directly as defensive weapons against enemies (toxins or deterrents) and some of which act as components of the complex internal signaling network that insures that defense is timed to enemy attack. Recent work reveals a surprising trend: The same compounds may act as both weapons and signals of defense. For example, two groups of well-studied defensive weapons, glucosinolates and benzoxazinoids, trigger the accumulation of the protective polysaccharide callose as a barrier against aphids and pathogens. In the other direction, several hormones acting in defense signaling (and their precursors and products) exhibit activity as weapons against pathogens. Knowing which compounds are defensive weapons, which are defensive signals and which are both is vital for understanding the functioning of plant defense systems.


Asunto(s)
Herbivoria/fisiología , Plantas/metabolismo , Animales , Benzoxazinas/metabolismo , Glucanos/metabolismo , Glucosinolatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/fisiología
10.
Phytochemistry ; 102: 97-105, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24713572

RESUMEN

In order to defend themselves against arthropod herbivores, maize plants produce 1,4-benzoxazin-3-ones (BXs), which are stored as weakly active glucosides in the vacuole. Upon tissue disruption, BXs come into contact with ß-glucosidases, resulting in the release of active aglycones and their breakdown products. While some aglycones can be reglucosylated by specialist herbivores, little is known about how they detoxify BX breakdown products. Here we report on the structure of an N-glucoside, 3-ß-d-glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc), purified from Spodoptera frugiperda faeces. In vitro assays showed that MBOA-N-Glc is formed enzymatically in the insect gut using the BX breakdown product 6-methoxy-2-benzoxazolinone (MBOA) as precursor. While Spodoptera littoralis and S. frugiperda caterpillars readily glucosylated MBOA, larvae of the European corn borer Ostrinia nubilalis were hardly able to process the molecule. Accordingly, Spodoptera caterpillar growth was unaffected by the presence of MBOA, while O. nubilalis growth was reduced. We conclude that glucosylation of MBOA is an important detoxification mechanism that helps insects tolerate maize BXs.


Asunto(s)
Benzoxazoles/metabolismo , Glucósidos/metabolismo , Spodoptera/metabolismo , Zea mays/química , Animales , Benzoxazoles/química , Glucósidos/química , Inactivación Metabólica , Estructura Molecular , Spodoptera/química
11.
BMC Evol Biol ; 13: 193, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24020365

RESUMEN

BACKGROUND: Plants have evolved an astonishing array of survival strategies. To defend against insects, for example, damaged plants emit volatile organic compounds that attract the herbivore's natural enemies. So far, plant volatile responses have been studied extensively in conjunction with leaf chewing and sap sucking insects, yet little is known about the relationship between plant volatiles and gall-inducers, the most sophisticated herbivores. Here we describe a new role for volatiles as gall-insects were found to benefit from this plant defence. RESULTS: Chemical analyses of galls triggered by the gregarious aphid Slavum wertheimae on wild pistachio trees showed that these structures contained and emitted considerably higher quantities of plant terpenes than neighbouring leaves and fruits. Behavioural assays using goats as a generalist herbivore confirmed that the accumulated terpenes acted as olfactory signals and feeding deterrents, thus enabling the gall-inducers to escape from inadvertent predation by mammals. CONCLUSIONS: Increased emission of plant volatiles in response to insect activity is commonly looked upon as a "cry for help" by the plant to attract the insect's natural enemies. In contrast, we show that such volatiles can serve as a first line of insect defences that extends the 'extended phenotype' represented by galls, beyond physical boundaries. Our data support the Enemy hypothesis insofar that high levels of gall secondary metabolites confer protection against natural enemies.


Asunto(s)
Áfidos , Pistacia/química , Pistacia/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Animales , Cabras , Herbivoria , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...